On the Hard Lefschetz property of stringy Hodge numbers
نویسنده
چکیده
For projective varieties with a certain class of ‘mild’ isolated singularities and for projective threefolds with arbitrary Gorenstein canonical singularities, we show that the stringy Hodge numbers satisfy the Hard Lefschetz property (i.e. h st ≤ h p+1,q+1 st for p+ q ≤ d− 2, where d is the dimension of the variety). This result fits nicely with a 6-dimensional counterexample of Mustaţă and Payne for the Hard Lefschetz property for stringy Hodge numbers in general. We also give such an example, ours is a hypersurface singularity.
منابع مشابه
Stringy Hodge numbers of threefolds
Batyrev has defined the stringy E-function for complex varieties with at most log terminal singularities. It is a rational function in two variables if the singularities are Gorenstein. Furthermore, if the variety is projective and its stringy E-function is a polynomial, Batyrev defined its stringy Hodge numbers essentially as the coefficients of this E-function, generalizing the usual notion o...
متن کاملStringy Hodge Numbers and P-adic Hodge Theory
Stringy Hodge numbers are introduced by Batyrev for a mathematical formulation of mirror symmetry. However, since the stringy Hodge numbers of an algebraic variety are defined by choosing a resolution of singularities, the well-definedness is not clear from the definition. Batyrev proved the well-definedness by using the theory of motivic integration developed by Kontsevich, Denef-Loeser. The a...
متن کاملStringy Hodge numbers for a class of isolated singularities and for threefolds
Batyrev has defined the stringy E-function for complex varieties with at most log terminal singularities. It is a rational function in two variables if the singularities are Gorenstein. Furthermore, if the variety is projective and its stringy E-function is a polynomial, Batyrev defined its stringy Hodge numbers essentially as the coefficients of this E-function, generalizing the usual notion o...
متن کاملN ov 2 00 5 Stringy E - functions of varieties with A - D - E singularities Jan
The stringy E-function for normal irreducible complex varieties with at worst log terminal singularities was introduced by Batyrev. It is defined by data from a log resolution. If the variety is projective and Gorenstein and the stringy E-function is a polynomial, Batyrev also defined the stringy Hodge numbers as a generalization of the Hodge numbers of nonsingular projective varieties, and con...
متن کاملStringy E-functions of Varieties with A-d-e Singularities
The stringy E-function for normal irreducible complex varieties with at worst log terminal singularities was introduced by Batyrev. It is defined by data from a log resolution. If the variety is projective and Gorenstein and the stringy E-function is a polynomial, Batyrev also defined the stringy Hodge numbers as a generalization of the Hodge numbers of nonsingular projective varieties, and con...
متن کامل